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[Article by Tian Xinmin [3944 2450 3046], Wang 
Dingxing [3769 7844 5281], and Shen Meiming [3088 
5019 2494] of the Qinghua University Department of 
Computer Science and Technology, Beijing: "Perfor- 
mance and Evaluation of a Parallel Abstract Machine 
for Term Graph Rewriting (PAM/TGR)1*1"; MS 
received 16 May 92] 

[Text] This article begins with a brief description of the 
design and implementation of a parallel abstract 
machine for term graph rewriting (PAM/TGR) based on 
the heterogeneous parallel graph rewriting execution 
model (HPGREM). It then discusses performance eval- 
uation standards oriented toward the PAM/TGR and 
describes the possible occurrence of two types of accel- 
eration phenomena, over acceleration and ill accelera- 
tion, in parallel multiprocessor systems and provides a 
definition of over-speedup ratio and ill-speedup ratio. 
On this foundation, we tested and evaluated the perfor- 
mance of the PAM/TGR based on typical benchmarks. 
The results of the tests show that the PAM/TGR 
machine has good acceleration results and a high pro- 
cessor utilization rate, that it can effectively avoid 
serious ill speedup phenomena, and that its system 
performance is superior to similar systems in foreign 
countries at the present time. 

Key terms: Parallel graph rewriting model, parallel 
abstract machine, benchmark program, performance 
evaluation 

I. Introduction 

Extremely significant advances have been made in 
work in many areas in vanguard realms of research on 
parallel computers, especially the generally acknowl- 
edged successful integration of parallel computing 
technology with artificial intelligence technology, 
which has effectively spurred the development of 
parallel processing technology131. The development of 
VLSI technology and various new computing technol- 
ogies have also provided effective support for con- 
structing high-performance parallel processing sys- 
tems. Theoretical research on parallel graph rewriting 
computation technology as a new computing tech- 
nology can be traced back to the 1930's. At that time, 
A. Church and other logicians did creative research 
on theoretical aspects of rewriting computation. 
During the past several years, extremely significant 
research achievements in rewriting computation tech- 
nology in areas like time state logic, program design 
logic, formalized software development, and so on 
have aroused interest and attention among people in 
the computer science field. Rewriting computation 
theory as the study of basic theory on computability is 

focused on defining precise symbolic system descrip- 
tions and usable mechanical methods for carrying out 
evaluation operations and data, which fundamentally 
determines that computing based on rewriting has 
superior mathematical properties. We used intensive 
research on graph rewriting computation theory as a 
basis for proposing an expanded graph rewriting 
model (EGRM)112,131 for use in supporting the effec- 
tive implementation of functional language and par- 
allel logic language. Because the special-purpose hard- 
ware designed to support parallel graph rewriting 
computation is restricted by data relationships among 
tasks, the hardware is too expensive. Thus, using 
several commercially available single processors to 
put together a parallel multiprocessor system with a 
restructurable topological architecture to support the 
highly effective implementation of parallel graph 
rewriting computation has become a very significant 
research topic. The key to the problem lies in how to 
compensate for the semantic differences between the 
rewriting model and the Von Neumann model used in 
the processors now currently available commercially, 
so we designed and implemented a new parallel 
abstract machine for term graph rewriting (PAM/ 
TGR) for use as a interface between the rewriting 
model and the Von Neumann model17,9,101. The 
PAM/TGR is a parallel computing system that sup- 
ports multiple types of declarative languages oriented 
toward artificial intelligence applications and 
research on it will provide substantial research expe- 
rience for parallel implementation technologies for 
declarative languages. 

This article first provides a brief description of the 
parallel abstract machine for term graph rewriting 
(PAM/TGR) and its architecture and then provides and 
discusses performance evaluation standards oriented 
toward PAM/TGR. Part IV of this article describes and 
analyzes the results of performance tests of the parallel 
abstract machine PAM/TGR based on benchmarks and 
concludes by comparing the operational performance of 
several benchmark programs in the PAM/TGR to the 
performance of similar systems in foreign countries and 
offers conclusions. 

II. The Parallel Abstract Machine PAM/TGR and Its 
Architecture 

There are two typical abstract machines oriented 
toward effective implementation of declarative pro- 
gram design languages: 1) The sequential graph 
rewriting function abstract machine G-machine11] 
proposed by L. Augustsson and 2) The sequential 
logic abstract machine WAM-machine proposed by 
D. H. D. Warren121. Unlike these generally known 
sequential abstract machines, parallel abstract 
machines based on different parallel execution 
models are still in the research stage. It should be 
noted that the G-machine and WAM-machine cannot 
simply be expanded into parallel abstract machines 
that support the corresponding functional programs 
and logic programs. For this reason, we proposed and 
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designed the parallel abstract machine PAM/TGR 
and corresponding architecture based on the hetero- 
geneous parallel graph rewriting execution model 
HPGREM. Our design goals were: 

1. The PAM/TGR should be capable of effectively 
supporting functional language and logical language 
computing semantics under a unified framework of 
expanded graph rewriting computation. 

2. Effectively support the heterogeneous parallel graph 
rewriting execution model. 

3. Absorb the advantages of the G-machine, WAM, TIM, 
<v, G>-machine, FAM, and other abstract machines. 
Develop parallelism with an appropriate granularity on 
the basis of fully utilizing single-processor resources. 

4. Easy conversion of attributed AND/OR graphs into 
PAM/TGR instructions. 

5. Suitable for effective implementation in distributed 
memory or shared memory multiprocessor systems. 

The parallel abstract machine PAM/TGR is composed 
of four parts: the memory organization, data representa- 
tion, instruction set and machine instruction execution 
algorithm, and multiprocessor architecture19,111. 

A. Memory organization 

The parallel abstract machine memory organization is 
composed of five parts: the Code Space, Data Space, 
Stack Space, Heap Space, and Register Group. 

1. Code space: the executable codes and control infor- 
mation corresponding to these codes generated by the 
storage compiler. 

2. Data space: local solution space used to record the 
final values and rewriting computation graphs for argu- 
ment nodes. 

3. Stack space: the top nodes and rewritable nodes used 
to store rewritable sub-graphs and the computing envi- 
ronment of the rewritable nodes. 

4. Heap space: used to store the construct nodes, lazy 
rewriting nodes, and structured data generated by exe- 
cuted graphs. 

5. Register group: used to store the stack top pointers for 
each of the stacks, currently rewritable sub-graph top 
node pointers, and recoverable garbage space chain tail 
pointers. 

We use the unified name of graph rewriting space for 
these five types of memory space for the actual memory 
system of the heterogeneous parallel graph rewriting 
execution model. The execution graph is the memory 
object of this system and the graph nodes are the most 
fundamental units. Actually, each graph node is a com- 
plex data structure that is composed of a graph node 
identifier, operation sub-name, certain parameter fields, 
and a control field in the form: 

Id: Op (Arg„ Arg2,..., Arg„, Ctl„ Ctl2,.... Ctlm) 

Id is the address of the graph node in the graph space, Op 
is the node operator, Ar& is the parameter node, and Ctlj 
is the control node. It should be explained that the type 
of control field used is closely related to the actual 
execution control model. For the shared graph nodes, 
however, the control field is essential. In the organiza- 
tion of the parallel abstract machine memory system, we 
use a low-frequency data copying tactic to compress the 
rapid consumption of memory space by the independent 
environment during the rewriting task execution pro- 
cess. A pointer re- initiation and copying tactic is used 
for complex data structure citation and small granularity 
non-moving tasks to reduce environment copying over- 
head and to always place the overall computing environ- 
ment for rewritable tasks directly in the heap space 
pointed out by the current environment stack stack-top 
pointer according to the category of parameter node, 
thereby improving rewriting efficiency. 

B. Data representation and graph node format 

The data in the parallel abstract machine is composed of 
two fields: an indicator field and value field. The indi- 
cator field stores the data category and the value field 
stores a value or pointer depending on the category 
identification in the indicator field. The data categories 
in the PAM/TGR are: integer, real type, Boolean, char- 
acter, character string, atomic, null atomic, construct, 
user-defined construct, tuple, and argument. See refer- 
ence [11] for a detailed definition of the storage format 
for each data category. 

It should be explained that the graph node formats 
CONS, CONST, REF, and OPR are category indicator 
classifications in the data representation. They have a 
more regular meaning and are a type of classification tag. 
This type of classification aids in graph space allocation 
and scratch area recovery. 

C. Parallel abstract machine PAM/TGR instruction set 

The instruction set of the parallel abstract machine 
contains 10 kernel instructions. Declarative programs 
use multilevel programs for conversion and translation 
into the PAM/TGR instruction sequence. Finally, we 
converted this instruction sequence into execution 
object codes that can be executed in a multiprocessor 
system composed of 16 Transputers. See references [9] 
and [11] for the PAM/TGR instruction form and 
semantic definitions. Theoretically, the parallel abstract 
machine PAM/TGR is suitable for implementation in 
shared memory multiprocessor systems and is also suit- 
able for implementation in distributed memory multi- 
processor systems. The only difference is the difference 
in synchronous implementation modes for parallel tasks. 
For the data expressions corresponding to the parallel 
abstract machine PAM/TGR, the abstract machine 
instructions have six types of high-level addressing 
modes, as described in reference [11]. Adoption of these 
six types of high-level addressing modes enables the 
Compiler to process scalar data, structured data, and 
rewriting closures using a simple unified model. It 
should be explained that the instruction set for the 
parallel abstract machine PAM/TGR does not include 
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instructions related to task requests and inspection of 
this type of request because the execution behavior of 
these two instructions does not affect the state of abstract 
mächine execution. The state of each stack and the state 
of the heap space are not affected, whereas during 
operation the task dynamic management system per- 
forms the function of inspecting resource states and 
distributing parallelable tasks. The abstract machine 
instruction execution algorithm describes the state con- 
version of the abstract machine and simultaneously 
directly maps the abstract machine instructions in the 
mapping algorithm of its architecture17,"]. 

D. The architecture of the parallel graph rewriting 
abstract machine PAM/TGR 

Parallel multiprocessor architectures can generally be 
divided into two categories. One category is loosely- 
coupled distributed memory multiprocessor systems in 
which each processor communicates via an interconnec- 
tion network at a communication speed that is determined 
by the network bandwidth. The second category is tightly- 
coupled shared memory multiprocessor systems in which 
the communication speed among processors is determined 
by the memory bandwidth. Both of these types of multi- 
processor systems pose the problem of network delays or 
memory delays due to the communication or memory 
bandwidth in development of computing parallelism to 
support parallel graph rewriting execution models. If fine 
granularity parallelism is being developed, it is quite 
possible that the large amount of accessing, communica- 
tion, and environment copying that result may offset the 
benefits from developing computing parallelism. As a 
result, the design of a multiprocessor architecture to 
develop coarse granularity activated conservative paral- 
lelism based on a heterogeneous parallel graph rewriting 
execution model adopts a distributed memory multipro- 
cessor architecture1'1'. The parallel abstract machine 
PAM/TGR is a loosely-coupled multiprocessor system 
composed of several processing elements [PE] with local 
memory via an interconnection network. By cooperative 
operation of the task distributor (TD) on each PE, the 
execution graph is distributed in a passive manner to each 
idle PE and each PE carries out rewriting and conversion 
of each of the rewritable subgraphs that are distributed to 
the local graph memory space. The local graph memory 
space in each PE in the PAM/TGR independently com- 
piles and rewrites the required parameter environments 
that are obtained via the interconnection network in a 
message passing mode. In an Eager computing mode, the 
parameter environment is always distributed to the corre- 
sponding PE along with the rewrite nodes (rewriteable 
nodes). The organizational model of the PAM/TGR is a 
fully distributed model, which is entirely different from 
the previously constructed virtual global memory space 
supported graph rewriting computation model. This model 
can avoid the problem of environmental consistency 
implicit in shared memory space and effectively support 
the dynamic distribution of execution graphs. 

This section provides a brief description of the design of 
the parallel graph rewriting abstract machine PAM/TGR 

and its architecture. The high-level instruction set of the 
PAM/TGR is clear and simple, has strong applicability, 
and is capable of effectively supporting heterogeneous 
parallel graph rewriting execution models. We have imple- 
mented the PAM/TGR machine in a hardware environ- 
ment constructed from a Transputer array. Moreover, the 
PAM/TGR is a scalable multiprocessor system with a 
topological architecture that can be restructured by using 
programs. 

III. Performance Evaluation Standards for the Parallel 
Graph Rewriting Abstract Machine PAM/TGR 

Performance testing and evaluation for the parallel multi- 
processor system is an important aspect of its system 
performance. There is an endless stream of parallel com- 
puter systems now being promoted internationally, for 
example the MARK-II based on the Intel 80286/80287, 
the MARK-III based on the Motorola 68020/68881, and 
the distributed memory system NCUBE 6400 series pro- 
moted by the NCUBE Company in the past few years 
(maximum of 8,192 processing elements). As these multi- 
processor systems have appeared, a series of questions like 
how to test and evaluate these systems, how to exploit 
system potential and determine their scope of applications, 
and so on have become increasingly important. In general, 
testing and evaluation methods for parallel multiprocessor 
systems can be divided into three categories: 1) Hard 
testing methods for testing hardware performance; 2) The- 
oretical analysis methods based on abstract models; 3) Soft 
testing methods based on benchmark programs. Hard 
testing usually only provides component performance and 
is a theoretical peak value. Thus, its actual applications 
value is not great. The theoretical analysis method based 
on abstract models mainly uses simulation analysis and 
probability statistics to obtain communication perfor- 
mance, response time, and other theoretical values. These 
theoretical values play a substantial guiding role in actual 
work but are often quite different from the actual perfor- 
mance. Thus, people usually use a soft testing method 
based on benchmark programs. The soft testing method is 
simple and direct and has been universally adopted for this 
reason. We used this type of soft testing method in 
performance testing and evaluation of the parallel graph 
rewriting abstract machine PAM/TGR. 

There are quite a few indices for evaluating the perfor- 
mance of parallel systems and the scope of evaluations is 
very broad. Their main differences from sequential sys- 
tems are the use of time overlapping, resource sharing, and 
other modes to increase program execution efficiency. The 
parallel graph rewriting execution system places no added 
burden on users when using this system and the inherent 
parallelism in the program is automatically developed by 
the PAM/TGR and the inherent sequentialness is automat- 
ically protected by the PAM/TGR. As a result, ML and 
PARLOG programs on sequential machines can operate 
on the PAM/TGR machine without revisions, and there 
are substantial acceleration benefits. We tested and evalu- 
ated the PAM/TGR system in execution time, speedup 
ratio, execution efficiency, rewriting speed, and other 
areas. The related basic concepts are defined below: 
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Definition 3.1: Execution time 

Execution time is the time spent in executing program P 
in a certain parallel environment, and is recorded as T 
(in seconds). 

Definition 3.2: Speedup 

Assuming that for program P, Tt is the execution time of 
program P with i processors, the speedup ratio Sn for n 
processors is defined as Sn - T,/Tn. 

Definition 3.3: Execution efficiency 

The execution efficiency of program P in n processors is 
E„ - Sn/n, and the size of En is a reflection of the 
utilization rate of the n processors. 

Definition 3.4: Rewriting speed 

Assuming that for program P, R is the rewriting steps in 
the process of executing program P, the rewriting speed 
for n processors is R„ - R/Tn (rewriting steps/second). 

In these four indices, the speedup ratio can be divided 
into three situations: over acceleration, normal acceler- 
ation, and ill acceleration. These are defined as: 

Definition 3.5: Over speedup 

Assuming that for program P, if the speedup ratio for 
program P in n processors is Sn>n, then En> 1 gives an 
over speedup ratio On - (S„/n>-l 

Definition 3.6: Normal speedup 

Assuming that for program P, if the speedup ratio Sn for 
program P in n processors satisfies 1 < Sn < n, then 0 < 
En < 1, so the normal speedup ratio is N„ - Sn. 

Definition 3.7: 111 speedup 

Assuming that for program P, if the speedup ratio in n 
processors is Sn < 1, then the ill speedup ratio is In -1 - Sn. 

Over speedup can only appear accidentally under two 
conditions: 1) When solving search problems and NP 
problems for artificial intelligence, multiple processors 
computing in parallel accidentally find the shortest solu- 
tion path. 2) When program P is operating in a single 
processor, because of memory capacity limits, over accel- 
eration can occur in a situation in which the overhead is 
very large due to the processor frequently carrying out 
space recovery and reallocation when multiple processors 
are operating and each processor expends very little over- 
head in this area. This condition occurred in testing the 
PAM/TGR. The ideal speedup ratio of parallel programs 
in n processors is n and the ideal speedup ratio of sequen- 
tial programs is 1. However, because of restriction by the 
communication, synchronization, and other added over- 
head in developing computing parallelism, and restriction 
by the inherent parallelism of the algorithm and the 
program itself, the speedup ratio of parallel programs is 
generally in the range (l,n). The speedup ratio for sequen- 
tial programs is 0 < Sn < 1. 

Figure 1 is a diagram of the speedup ratio regional 
distribution for 16 processors. 
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Key: 1. Measured curve for append program; 2. Ideal 
curve 

In the figure, AQ is the normal acceleration region, A, is the 
over acceleration region, and A2 is the ill acceleration 
region. A relatively ideal parallel system would have these 
characteristics when executing the chosen benchmark: 1) A 
benchmark with good parallelism can produce a good 
speedup ratio; 2) Sequential codes without parallelism can 
be executed with high efficiency in parallel systems 
according to their execution models in sequential systems; 
3) Development of parallelism can produce a relatively good 
balance between the traffic and amount of computation and 
develop parallelism with a rational granularity. We 
described above several standards for testing and evaluating 
the performance of parallel multiprocessor systems. The 
selection of a rational and effective benchmark based on 
these standards is very important for making a fair evalua- 
tion of the performance of a parallel computer system. 

IV. PAM/TGR Performance Testing and Evaluation 
Based on Benchmarks 
Evaluation of the performance of parallel computer systems 
and sequential computer systems requires that the bench- 
marks selected be substantially representative and that they 
at least be capable of representing a group of identical or 
similar computing problems and not involve certain special 
cases, so that the conclusions drawn from these benchmarks 
can be extended naturally in applications to similar prob- 
lems. Based on this type of guiding ideology and focusing on 
execution time, speedup ratio, execution efficiency, and 
other aspects, and taking into consideration typical pro- 
grams for parallel systems for oriented declarative programs 
used for testing in foreign countries, we selected the fib, 
prime, hanoi, queen, tak, qsort, and other typical programs 
as the programs for testing the PAM/TGR system. Table 1 
lists the results of performance tests for the corresponding 
benchmarks in the PAM/TGR system and Figures 2(a) to 
2(d) plot the acceleration curves for several test programs 
run on the PAM/TGR. 
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Table 1. Results of Testing Several Benchmark Programs in the PAM/TGR 
Benchmark 
program 

Ti (seconds) T4 (seconds) T8 (lecondf) Tic (MCOBds) Sl6 El6 Rl6(rewrltlng 
steps/second) 

fib(30XM) 39.6084 15.2075 6.716 4.2409 9.34 58.375% 1373K 
fib(37XM) 1148.0182 438.5607 168.0175 104.1888 11.02 68.875% 1623K 
prime(100000KM) 26.6839 7.7211 3.9589 2.0267 13.17 82.31% 987K 
prime(200000XM) 61.3976 18.0924 9.2527 4.6899 13.09 81.81% 853K 

hanoi(20XP) 121.9000 30.5136 15.2879 8.0828 15.08 94.25% 778K 

hanoi(21XP) 243.7969 60.9885 30.5328 15.8271 15.40 96.25% 795K 

queen(8XP) 20.8886 12.0197 2.5026 2.4459 8.5402 53.37% 307K 

queen(9XP) 183.9586 100.0671 20.3672 10.0980 18.22 113.85% 368K. 

Note: M in the table represent» the use of the ML program in the test while P represent» the uae of the PARLOG program in the test. 
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Figure 2. Acceleration Curves for Some Benchmark Programs Run On the PAM/TGR 
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In testing the PAM/TGR system, the benchmarks we 
selected like die queen problem, prime problem, (fanta) 
problem, and so on are all actual problems in the fields of 
mathematics and AI, and all of them have specific com- 
puting scales and time and space consumption. This is 
especially true of the implementation of descriptions based 
on functional and logical program design languages, which 
place rather high requirements on effective management of 
memory and development and control of parallelism. 
From another side, they can also be used to examine the 
PAM/TGR system's automatic development and manage- 
ment of computing parallelism. The test results to examine 
the PAM/TGR system performance show that the 
rewriting speed for the several benchmark programs 
attained relatively high indices. 

It should be noted that over acceleration phenomena 
occurred during the solution process for the 9 queen 
problem described by the PARLOG program. The reason 
was that the internal memory of a single Transputer could 
not satisfy the requirements for solution of the 9 queen 
problem, which increased the dynamic recovery and 
reallocation operations for much of the memory space. In 
the multiprocessor system composed of 16 Transputers, 
because the computing scale for each of the subtasks was 
relatively small, the memory space utilization problem 
was alleviated, which avoided additional overhead due to 
large amounts of garbage space recovery and reallocation, 
which in turn led to the occurrence of over acceleration 
phenomena. The over speedup ratio On - (17.662/16)-1 - 
0.102. In addition, because the solution process for the 
queen problem involved a large amount of frequent 
transmission of dynamic data structures, the actual 
speedup of the program when operating in the PAM/ 
TGR was substantially poorer than the ideal speedup 

ratio. The results of research by Augustsson and Johnson, 
et al. show that the actual speedup ratio in a parallel 
system with a processor scale of 15 to 20 PEs is generally 
between 5 and 11. The results of our research indicate 
that the actual speedup ratio of the typical programs in 
the PAM/TGR (16 PEs) was generally between 6.38 and 
15.57. The 9 queen program for the parallel logic pro- 
gram PARLOG was an exception in that it involved over 
acceleration with a speedup ratio of 18.22. In addition, 
we have listed below the results of tests of an actual 
example of a logical language PARLOG table append 
program to test whether or not there is a serious ill 
speedup ratio in the parallel system, as shown in Table 2 
and Figure 3. , 

• Speedt 
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Figure 3. Acceleration Curves for the Append Program 

Run On the PAM/TGR 
Key: 1. Ideal speedup ratio for parallel programs; 2. Ideal 
speedup ratio for sequential programs 

Table 2(a). Execution Time for the Append Program Run On the PAM/TGR 
Benchmark program Execution time 

Ti (seconds) T2 (seconds) T4 (seconds) T8 (seconds) T16 (seconds) 

append(50,100) 0.0454 0.0529 0.0537 0.0592 0.0532 

append(100,200) 0.2828 0.3272 0.3892 0.3938 0.4041 

From the definition In - 1 - Sn we can derive the following table: 

Table 2(b). Ill Speedup Ratio for the Append Program Run On the PAM/TGR 
Benchmark program In 

12 I4 18 116 

append(50,100) 0.142 0.115 0.233 0.147 

append(100,200) 0.136 0.273 0.282 0.300 

Figure 3 and Table 2(b) show that the append program in 
the PAM/TGR basically maintains its sequential com- 
puting efficiency, which is an indication that the PAM/ 
TGR has a very small negative role in sequential pro- 
gram execution. It also illustrates that the optimized 

compiler in the PAM/TGR is capable of effectively 
recognizing parallelism and generating optimized 
abstract machine instructions based on the inherent 
characteristics (computing granularity and data interre- 
latedness restrictions) of the program. 
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V. Comparison With the Performance of Similar 
Systems in Foreign Countries and Conclusions 

Parallel multiprocessor systems are now being widely 
used in all applications realms and their scalable pro- 
cessor scale, high memory bandwidth, and high com- 
munication bandwidth all substantially improve the 
performance of parallel multiprocessor systems. Nev- 
erthelessthe network delays caused by cooperation 
among processors and the resource competition 
problem still exist. We gave full consideration to these 

problems in developing the PAM/TGR and adopted a 
variety of optimization technologies including devel- 
opment of coarse granularity for conservative paral- 
lelism, partial scheduling analysis during compiling, 
and so on[7,8,ul to enable a substantial improvement in 
the performance of the PAM/TGR. To further test the 
performance of the PAM/TGR system, we made com- 
parisons of the PAM/TGR system with similar systems 
internationally based on typical programs. The results 
of the comparisons are shown in Table 5. 

Table 5. Comparison of the Performance of Several Benchmark Programs Run On the PAM/TGR With the Performance 
of Similar Systems in Foreign Countries 

Benchmark program System name 

Alfalfa Buckwheat APEX K-LEAF PAM/TGR 

Hardware environment 

17Intel 80286 (hyper- 
cnbe) 

12NS32032 Encore 
Mnltlmax 

20 Sequent Balance 
21000 

16X800 16T800 

pfacO.100) 1.90s 0.29s(F) - - 0.058s(F) 
nqueen(8) 7.50s(F) 2.05s(F) - - 1.473s(F) 
qsort(200) 9.00s(F) 2.35s(F) - ■ 0.320s(F) 
tak(18,12,6) - - 7.20s(L) - 2.710s(L) 
hanoi(lS) - - 6.47s(L) ■ 2.287s(L) 
fib(29) - - - 7.750s(F) 3.29s(F) 
nqueen(8) - - - 3.080s(L) 2.72 ls(L) 
nqueen(9) - - - 13.937s(L) 10.378s(L) 
Note: F: represents a functional program, L represents a logic program, time units are in seconds. 

Table 5 [tables 3 and 4 omitted in original text] shows 
that the PAM/TGR system performance is very good. It 
can support highly efficient execution of functional 
language (ML) programs and parallel logic language 
(PARLOG) programs and its execution speed is signifi- 
cantly superior to similar systems in foreign countries. 
The Parallel Military Information Processing System 
and cryptographic system developed on the PAM/TGR 
by the Third Department of the [PLA] General Staff 
Computing Central Station show that the PAM/TGR 
system has definite applicability. It has a friendly user 
interface and convenient program debugging. Our fur- 
ther research work will adopt an even more advanced 
processor chip (such as the Transputer T9000 chip) and 
more advanced network communication technology, 
such as the Wormhole pathfinder technology. The adop- 
tion of SVM technology on this foundation to construct 
a new type of shared-distributed memory (SDM) system 
will effectively reduce network delays and utilization of 
processor resources, which will further improve the 
performance of the parallel abstract graph rewriting 
machine PAM/TGR. 
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Wuhan: "Software Development for the 980-STAR Sys- 
tolic Computer System" [see early brief report in JPRS- 
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[Excerpts] Abstract: This article describes the software 
functions, architecture, and user interface of China's 
first Systolic Computer System and concludes by 

pointing out the direction of further research in the 
future on this system software, [passage omitted] 

I. Overview 

The rapid development of modern science and tech- 
nology continually require the appearance of processors 
with faster speeds. The systolic technology proposed by 
professor H. T. Kong at Carnegie-Mellon University in 
the United States in 1978 appeared in this kind of 
situation. 

Systolic arrays are usually expressed as arrays composed 
of a number of processing elements (PEs) with identical 
logic functions; the PEs are connected locally in a simple 
regular communication geometry. This type of architec- 
ture is particularly well-suited to the implementation of 
VLSI [very large-scale integration]. 

Systolic arrays are suitable for algorithms with relatively 
good regularity like image processing, signal processing, 
matrix operations, etc. Because these algorithms often 
take up large amounts of time for computing tasks, the 
use of systolic arrays can greatly increase the overall 
speed of computing tasks. This characteristic of systolic 
technology makes it especially suitable for military appli- 
cations, and it has attracted the attention of the military 
in the United States as a result. In 1983, the United 
States Department of Defense listed systolic technology 
as one of the basic technological projects in its "Strategic 
Computing Program." 

The fixed connections among the component elements 
of systolic arrays limit the scope of their applications, 
and as a result people have used program control to 
change the communication geometry among the ele- 
ments. This type of array is called a programmable array. 
A typical example is the Warp Computer developed by 
Carnegie-Mellon University in 1986. It is a linear array 
composed of 10 Cells and its 32-bit speed can reach 100 
MFLOPS [million floating-point operations per second]. 
Another representative is the Matrix-1 Computer devel- 
oped by the Saxpy Company in the United States in 
1987. It is a linear array composed of 32 elements and its 
32-bit speed can reach 1,000 MFLOPS. 

China's first systolic computer is the 980-STAR Com- 
puter successfully developed by the China State Ship- 
building Corporation's Wuhan Institute 709 in July 
1989. It is a two-dimensional programmable array com- 
posed of 4 X 4 elements and its fixed-point 8-bit com- 
puting speed can reach 160 MIPS. 

Because systolic arrays are only suitable for several 
relatively regular computations, they are not suited to 
doing other computations or to system management and 
software development, and other work. Thus, these 
arrays often serve as a auxiliary machines connected to a 
common computer. Users use the systolic array proces- 
sors via the host machine, and the host machine is 
responsible for developing applied software, system 
management, and normal operations for the array pro- 
cessors. Moreover, an appropriate part of the array 
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Figure 1. 980-STAR Hardware Structure 

processor operations are turned over to the systolic array 
processors. For example, Warp computers use a number 
of SUN-3 workstations connected via a network (TCP/ 
IP) as host computers. The Matrix-1 uses a special 
high-speed channel for connection to a VAX machine. 
The host machine for the 980-STAR uses an Intel 
Corporation System 310 microcomputer and the oper- 
ating system is iRMX86. 

Below are described the primary characteristics of the 
system software for a computer system composed of a 
host machine and array processors. 

II. Architecture 

The hardware structure of the overall system is illus- 
trated in Figure 1. The host machine is connected to the 
array processor system via a Multichannel. In the array 
processor portion, besides a 4 X 4 systolic array, there is 
also an interface machine and four memories MEMO- 
MEMS. The CROSSBAR is the hub for data exchange 

among the three. The interface machine includes AGU, 
IOU, and CCU. AGU0-AGU3 are, respectively, the 
addresses generated for MEM0-MEM3. The IOU passes 
through the data buffer input DBI and data buffer output 
DBO to exchange data with the host computer, and it 
can exchange image data with the graphic subsystem. 
The CCU is the controlling unit for the array processors. 
It interprets the instructions from the host machine and 
controls the coordinated operation of the other pro- 
cessing units. The 4 X 4 Cell executes the actual systolic 
instructions. Thus, the array processor area has a total of 
22 processors. In the host machine area, besides the host 
computer there is also an image subsystem. After digiti- 
zation of the image that has been photographed by the 
camera, it transmits it into the DBI, and after the image 
is processed by the array processors it can be transmitted 
into the DBO. The image subsystem then extracts the 
data from the DBO and transmits it to the display. Of 
course, the host computer can also extract the resulting 
data from the DBO. 
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The system software of the overall system is distributed 
in one host machine and 22 processors, mainly in the 
host computer. The primary functions of the system 
software are: 1) Manage the operation and communica- 
tion of the processors; 2) Provide a user interface to the 
host machine and support the running of applications 
software; 3) Provide a user development tools environ- 
ment in the host machine. 

The system software in the array processors is a small 
amount of microcode implemented in the hardware. In 
the host machine, to make use of the original operating 
system and software tools, the original system must be 
expanded. The structure of the overall system software is 
illustrated in Figure 2. 

The software of the host computer is divided into four 
levels. The lowest level (hdriver) is the communications 
program targeted at the Multichannel. The second level is 
task management, including memory allocation in the 
array processors. The third level is the host library func- 
tions. They are the interface between user applications 
programs and the array processors. They convert user 
requests into the data required by the various processing 
units in the array computer system, and then transmit 
diem in a fixed format to the CCU. The data in this fixed 
format is called the Function Control Block (FCB). The 
highest level is the user applications program and the 
software tools to support array computer software devel- 
opment. 

The software of the array computer system is divided into 
three levels which correspond, respectively, to the three 
lowest levels of the host machine. Because there is a 
master-slave relationship between the host computer and 
array processors, the host computer is the main controlling 
area, so there is no fourth level for the software in the array 
processor area. At the lowest level, the IOdriver in the IOU 
and the IPdriver in the CCU are responsible for transmit- 
ting data to the hdriver in the host machine. At the second 
level, the EXEC in the CCU separate out the FCB from the 
data that are transmitted in and process the data itself, 
interpret the meaning of each field in the FCB, and allocate 
the third level library functions in each processor to 
complete the work for each one. These library functions 
are: FI running in the CCU, FA0-FA3 running, respec- 
tively, in AGU0-AGU3, and FC0-FC15 running, respec- 
tively, in CELLO-CELLI 5. Thus, each host function call in 
the host computer area is served by 21 library functions in 
the array processor area. 

The host library functions and array processor functions 
do not belong entirely to the system software. They are 
related to actual applications. Thus, the host library func- 
tions must be connected to the applications programs prior 
to running, while the array processor library functions 
must also be stored as needed in the file and then loaded 
into each of the processors in the array computer. 

When an applications program is running in the host 
machine, it calls host library functions and the latter 
convert user requirements into FCB. The FCB move 

downward level-by-level and at the lowest level pass 
along hdriver-Jodriver—»Ipdriver and are then trans- 
mitted to the EXEC which after interpreting them 
decomposes them and transmits each piece of data into 
each library function at the three levels for execution. 

III. User Interface 

Users have two utilization modes for the 980-STAR: the 
instruction mode and the programming mode. By using 
the former mode, users can type in instructions and call 
library functions at the terminal keyboard and instruct the 
array processors to execute them. In the latter mode, users 
call the host library functions in their applications pro- 
grams to request that the array processors complete the 
specified functions. There are also two processing modes 
for each of the utilization modes, the line-by-line pro- 
cessing mode and the batch processing mode. When using 
the line-by-line processing mode, the array processors 
must return control to the host machine when calling each 
corresponding host library function to execute each line 
and wait until the next function is called. In the batch 
processing mode, however, the user first writes a series of 
host library function calls into the file. These function call 
statements can use key words to construct various types of 
control structures like cyclic statements, conditional state- 
ments, and so on. Then users can use a special instruction 
(Ksubmit) to convert the library functions called in this file 
into a batch of FCB and they form the corresponding FCB 
chains according to the syntax in the file. The FCB chains 
are transferred together to the EXEC in the CCU for 
interpretation and execution. This file is called a batch 
processing file. The illustration below shows the four 
utilization modes for the 980-STAR: 

Instruction mode 

Utilization mode 

Programming mode 

Line-by-line 
processing mode 

Batch processing 
mode 

Line-by-line 
processing mode 

Batch processing 
mode 

The instruction mode is easy to use and convenient for 
program debugging. The programming mode supports 
program operation. The batch processing mode is easy 
for users to use and aids in rapid program structuring 
and debugging. Because the programs in the batch pro- 
cessing files are in the form of the original programs, 
they do not have to be compiled, so they are very easy to 
compose and revise. Particularly important is that the 
batch processing mode is especially suited to real-time 
off-line applications. In such situations, the array pro- 
cessors can be independent of the host machines after 
they receive the FCB chains transmitted from the host 
computer and carry out direct data transmission with 
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peripheral real-time equipment, which greatly acceler- 
ates the response of the array processors to peripheral 

[passage omitted] 

IV. Further Work 

The 980-STAR systolic computer system described 
above passed examination and acceptance by the 
National Defense Science, Technology, and Industry 
Commission in July 1989 and has been operating in an 
excellent manner in machines to date. This is a principle 
prototype that is distant from application and requires 
much more work. We must continue working in the 
following areas in relation to the system software: 

A. Software development tools 

This system has already provided several host library 
functions and the corresponding array processor func- 
tions regarding image and signal processing and matrix 
operations. This is not enough for different types of 
applications. Although the 980-STAR is a programmable 
systolic computer, it is still hard for normal users to 
compile new library functions, so users must be provided 
with several software development tools for them to 
conveniently generate the library functions they require. 
Some work is now being done in this area. 

B. Convenient applications interfaces 

The user interfaces now provided by the system are 
mainly targeted at programmers and several special 
interfaces targeted at certain specially determined fields 
must be provided. 

C. Support for various types of operating systems and 
high-level languages 

At present this system can only run in an iRMX86 
operating system and utilize PL/M-86 high-level language. 

D. Support for even higher-grade host computers to take 
full advantage of array processor capacity 

E. Improve system software operating efficiency 
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[Excerpts] Abstract: This article discusses a parallel 
processing system constructed from a RISC [reduced 
instruction set computing]-chip computer and intercon- 
nection modes, and on this basis focuses on implemen- 
tation of system control, management, communication, 
and so on under a XENIX environment. It concludes 
with an evaluation of the performance of this system 
using standard testing programs and a high-order matrix 
computation program. 

I. Introduction 

[passage omitted] 

The sections below describe the architecture of the parallel 
processing system (abbreviated as the ECI-PPS [East 
China Institute-Parallel Processing System]), its software 
application environment, an evaluation of overall system 
performance, and some of its characteristics. 

II. RISC T800 Architecture 

Before introducing the architecture of the ECI-PPS, we 
must first provide a brief description of the T800 as an 
important part of this system. 

The T800 is a RISC processor that is being promoted by 
the INMOS Company. In this system we use a 20 MHz 
chip With fixed point operating speed of 10 MIPS and 
floating point operating speed of 1.5 MFLOPS. Figure 1 
[not reproduced] illustrates the components of the archi- 
tecture. 

The system service units perform reset and total control 
functions for all units on the chip. The 64-bit floating 
point unit and 32-bit processor are used to do floating 
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point operations and various other types of operations. 
The FPU can execute single and dual-precision floating 
point arithmetic and it conforms to ANSI-IEEE 754- 
1985 standards. Its external memory interface can access 
4GB of address space and there is 4KB of unified 
addressing space on the chip. The interconnection server 
is the part provided by this chip that is used for inter- 
connection among the controller chips. The parallel 
processing system constructed from the T800 can be 
used in scientific/engineering computations, graphics/ 
image processing, real-time processing, and other 
realms. 

III. ECI-PPS Architecture 

A. ECI-PPS design principles 

The design principles for the ECI-PPS employ a building 
block-type modularized idea that uses additional proces- 
sors on the host computer to implement parallel processing 
functions for the system as a whole. The main task of the 
host machine is responsibility for management of the 
overall parallel system, whereas key technologies for the 
ECI-PPS are composed of the processor array in the 
parallel processing system that is actually responsible for 
executing user jobs, effectively organizing multi-element 
processors into an organic processing array, and coordi- 
nating the completion of user jobs (including job alloca- 
tion, scheduling, etc.), and the interface technology 
between the processor array and host machine. 

We mentioned in the previous section that the T800 chip 
has four interconnection channels and that each inter- 
connection channel has a pair of input/output channels. 
These channels are used for interconnections among 
chips, so this type of chip can be used to put together an 
architecture on an arbitrary scale. The ECI-PPS uses 
exactly this type of chip and there is substantial flexi- 
bility in the combinations of architectures. Moreover, 
the system composed of INMOS Company chips pro- 
vides relatively complete tools such as parallel language 
compilers and some debugging tools. 

Each processor in the system should have its own local 
memory because when it is doing large numbers of numer- 
ical computations, stubborn use of a shared memory 
arrangement will inevitably lead to problems like an 
increase in processing units, bus overburdening, and so on. 

The parallel processing array has one processor that serves 
as a root processor. Its main responsibility is communica- 
tion between the processor array and the host computer. 
All of the data in the processor array must go through this 
root processor to communicate with the host machine. The 
reasons are one, that it reduces the burden on the bus, and 
two, that it reduces control. 

The basic interconnection arrangement for the processor 
array is a pipelining interconnection mode that utilizes 
one pair of input/output channels. If all three of the other 
channels have a completely hard-wired interconnection, 
the topological architecture is fixed and is not flexible 

enough. Thus, the adoption of a basic pipelining archi- 
tecture with an added interconnection network enables 
the production of this type of topological architecture. 

Based on present applications requirements and devel- 
opment trends, when providing a software environment 
the operating system of the UNIX series should be the 
primary environment. Here, we chose the UNIX variant 
operating system XENIX System V, but in taking into 
consideration the large number of DOS users at the 
present time we also provided a DOS environment for 
the parallel processing system. 

B. ECI-PPS architecture 

The ECI-PPS is composed of a host computer, a pro- 
cessor array, and an interconnection network. The archi- 
tecture is illustrated in Figure 2. 

In the diagram, the host computer is the controller 
machine for the overall parallel processing system and it 
manages user input/output operations like printing, 
screen output, keyboard input, etc., and it carries out 
initiation, control, and diagnostic operations for the 
processor array and interconnection network. It is also 
responsible for communication between the processor 
array and peripheral devices. 

The interconnection network is a 32-circuit crossbar 
switch with 32 input channels and 32 output channels. 
Each pair of input/output channels gives each processor 
bidirectional communication capabilities, so this intercon- 
nection network can be connected to a maximum of 32 
processors. Moreover, programming software for control- 
ling this interconnection network system can be used to 
form these processors into a parallel processing system 
with a variety of topological architectures such as an array 
type or tree structure, cube Or hypercube structure, and so 
on. 

The function of the root processor is to be responsible for 
advance processing of user jobs such as editing, com- 
piling, connecting, and so on, and it carries out alloca- 
tion, dispatching, and control of the other processors in 
the system. It is also the channel for data transmission 
between the processor array and the host machine. This 
point can be seen from the architecture. Moreover, the 
root processor also participates in parallel processing of 
jobs. 

Each processor in the processor array (including the root 
processor) uses a 20 MHz T800 processor and has 2MB 
of local memory (LM). The function of this local 
memory is to access the program codes and data that 
must be executed by this processor system. 

One can see from the architecture that the parallel 
processing system uses a loosely-coupled and point- 
to-point communication structure. The advantage of 
point-to-point communication is that it permits the 
addition of an unlimited number of processors without 
the possibility of problems appearing like those in a 
similar tightly-coupled and bus architecture. The basic 
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Figure 2. ECI-PPS Architecture 

Key: a. User interface; b. Host computer; c. Peripheral devices; d. Bus; e. Root processor; f. Processor 1; g. Processor 
N; h. Local memory 0; i. Local memory 1; j. Local memory N; k. Interconnection network 

architecture of the parallel processing system is a pipe- 
lining arrangement, but reflective alterations can be 
made via the interconnection network according to job 
processing requirements and architectures. 

IV. Software Environment 

Control of normal system operation involves the opera- 
tion of system control modules. Before describing the 
working principles of the system control modules, we 
want to discuss the functions of the overall system 
control modules, the communication protocol for the 
parallel processing system and host computer, and the 
design of a device actuation program under XENIX. 

A. Functional requirements 

Besides the computing functions of the processing array 
itself, it must also control the required services provided 

by the software. These system services mainly involve 
system services, file processing, operating system con- 
trol, and other functions. 

1. System service functions: the requirements include 
system initiation and termination, providing a clock, 
environment changes, and so on. 

2. File processing functions: the requirements including 
opening, closing, and reading and writing files, informa- 
tion transmission, etc. 

3. Operating system control functions: the requirements 
include interrupt processing, system memory reading 
and writing, input/output port accessing, etc. 

B. Communication protocol 

In the overall system, there are two types of communi- 
cation. One type is communication between the host 
machine and the processing array and the other is 
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communication between each of the processors in the 
processing array. Their formats and communication 
modes are different. 

1. Communication between the host computer and the 
processing array 

Functions to be executed —! to. Al? from A2 

to, Al —Execution of instruction 

from. A2 — Resulting value 

In the format, ! is an instruction execution request 
received through the channel by the host machine from 
the processor array and then processed according to the 
corresponding requirement. ? is the result of the execu- 
tion transmitted to the processor array through the 
channel after the host machine completes the instruc- 
tion. 

2. Communication among the various processors in the 
parallel processing array 

Along with providing parallel languages, the INMOS 
Company also provides users with an intercommunica- 
tion process among the processors. Its format is: 

CHAN-IN(variable, input channel number) 

CHAN-OUT(variable, input channel number) 

CHAN-IN( indicates that the variable is trans- 
mitted into the input channel 

CHAN-OUT( indicates the data received from 
the output channel. 

There is mutual correspondence among them and com- 
munication only occurs when the input path and output 
path are in the same states. Otherwise, it remains in a 
wait state. 

a. npmft 

C. Design of parallel processing system hardware drive 
programs ander a XENIX operating system environment 

Because control and utilization of devices by the UNIX 
series of operating systems is different from the DOS 
operating system, it cannot directly use device ports in 
applications programs for reading and writing like DOS 
can. It requires that when an applications program uses 
devices, it must be carried out according to the file mode 
being utilized, and the drive program design must provide 
the applications program with several interfaces such as 
file modes, which mainly include opening, closing, reading 
and writing, other control, and so on, after which it 
restructures the operating system kernel. Implementation 
of this process as a whole is more difficult that under DOS. 
Below, we will only plot the working principles and design 
of a drive program under XENIX and will not provide 
additional descriptions under DOS. 

1. Working principles of the drive program 

As shown in Figure 3, when an applications program 
uses devices it can enter system calls (such as field-open 
("device name", opening mode)) into the operating 
system kernel and the kernel then enters the corre- 
sponding drive program codes according to the param- 
eter called. In this way, the drive codes control the 
devices according to requirements. 

2. Drive program design 

Based on the requirements of the operating system and 
the actual characteristics of the parallel processing 
system hardware, we designed a drive program for it that 
contains six processes. They are opening, closing, 
reading, writing, initialization, and communication pro- 
cesses. Opening and closing are the necessary prepara- 
tory work requested of the operating system for the 
reading, writing, and other processes. The reading and 
writing processes are simply data reception and trans- 
mission. These two processes also include detecting and 
processing device error states, while the initialization 
and communication visual applications programs use 
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Figure 3. Working Principles of Drive Program Under a XENK Environment 
Key: a. User program; b. System calls; c. XENIX kernel; d. Driver and kernel interface; e. Drive codes; f. User space; 
g. Kernel space; h. Peripheral devices * _"  
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the actual conditions of the device for selection and 
utilization, and they complete several initializations, 
port selections, and so on. These processes must use the 
special tools provided by the operating system to com- 
pile them and connect into the kernel. 

D. Working principles of the system control module 

The system control module of the parallel processing 
system serves as a sub- module of the operating system 
that runs together with the operating system in the host 
machine, coordinates and manages the overall parallel 
processing system, and facilitates transplantation of the 
system control module into other operating system envi- 
ronments (such as the DOS environment). It integrates 
processing array management, equipment request pro- 
cessing, communication coordination, management task 
dispatching, and other functions in this module, whereas 
the operating system manages system software resources 
(such as file systems, etc.) and hardware resources (such 
as standard input/output devices* etc.). This turns the 
most direct control and management tasks over to the 
system control module for completion. Below, we focus 
on a description of the flow process for the operation of 
this module (illustrated in Figure 4). 
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Figure 4. Parallel Processing System Control Module 
Flow Chart 

Key: a. Frame 1; b. Frame 2; c. Frame 3; d. Frame 4; e. 
Frame 5; f. Processor array initialization; g. Self- 
selection of three categories of codes that require pro- 
cessing from the parallel processing system; h. Inquire if 
completed or not; i. Not completed; j. Control and 
receive service requests emitted by processing array; k. 
Carry out processing based on the corresponding instruc- 
tions and transmit results to processor array; 1. Com- 
pleted; m. Output 

Frame 1: The system control module presets the working 
state of the processor system and places it into a prepa- 
ration state for receiving tasks such as processing array 
reset, error detection, etc. 

Frame 2: The system control module transmits three 
types of codes (source codes, intermediate codes, object 
codes) to the processor array. These codes are generated, 
respectively, by the editor, the compiler on the root 
processor, and the chain linker. 

Frames 3 and 4: The root processor is used to control the 
processor array (because all of the processors in the 
processor array must pass through the root processor 
before they can communicate with the host machine), 
inquire of its execution state, receive requests for data 
transmission, etc. 

Frame 5: Processing of service requests from the pro- 
cessor array, such as file reading and writing and other 
related operating system system call requests, and feed- 
back of processing results to the processor array. 

V. Parallel Processing System Software and Hardware 
Characteristics 

A. Primary characteristics of the software environment: 

1. The ECI-PPS can run under both the DOS and 
XENIX environments, which has expanded its scope of 
suitability. 

2. It provides serial C, FORTRAN, and PASCAL and 
parallel C, FORTRAN, OCCAM, and other language 
operating environments under DOS and XENIX. 

3. Source programs under DOS can run without further 
modification under XENIX, and the same holds true for 
the opposite case. This makes program design very 
convenient. 

B. Primary characteristics of the hardware system: 

Modularized architecture, and each processor system in 
the ECI-PPS employs modular ideas in the design. 

The system-level design leaves expansion and restruc- 
turing capabilities. 

1. The changeable topological architecture and intercon- 
nection network software controllability permit corre- 
sponding changes to be made in this system according to 
different situations and different algorithm structures. 

2. A loosely-coupled and point-to-point architecture. 
This can reduce the overhead arising from communica- 
tion and competition. 

3. RISC technology applications. 

VI. Performance Evaluation 

To make a quantitative description of the performance 
of the parallel processing system as a whole, we selected 
a testing program from the Gould Minisupercomputer 
Company and a large number of data computation 
programs, and ran user jobs on this system and ran 
identical jobs on other types of computers to compare 
and analyze the amount of time required. 
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A. List of testing programs 

1. WHETSTONE: used to test floating point operations. 

2. DHRYSTONE: used to test system input/output per- 
formance. 

3. High-order matrix operations. 

B. Performance evaluation 
When conducting the performance evaluation, we 
mainly used an EC-386 developed by the East China 
Computing Technology Institute (25MHz clock, with 
CACHE) and representative computers from foreign 
countries as models for comparison with the parallel 
processing system. Tables 1, 2, and 3 list the results of 
file performance comparisons. 

Table 1. WHETSTONE Program Test Table (units: K/S) 
TjftMamimtauUwaaz»aimmftnmmmt Single predsioa Daal precision 

EC-386 25 MHz XENIX 20 21 

EC-386 25 MHz DOS 72 85 

EC-386 25 MHz (+387) DOS 679 - 

Processor array (One T800) 1587 1639 

Processor array (Two T800) 2646 2703 

Processor array (Four T800) 4831 4878 

Table 2. DHRYSTONE Test Table (units: DK/S) 
Typeorcoaspnter Master dock speed Oprialiug ajateai Pcribfance 

VAX-11/750 - UNDC4.2 877 

IBM 4341 16.67 MHz UTS 5.0 3685 

SUN/75 16.67 MHz SUN 4.2 3571 

EC-386 25 MHz (CACHE) XENKV 6250 

Parallel processing system (One 
T800) 

20MHz TDS 4410 

VAX 8600 - UNDC4.3 7088 

VAX 8600 - VMS 7142 

Table 3. High-Order Matrix Sample Operation Comparison (Units: Seconds) 
NuAcr of cycles 1* 50 100 

EC-386 DOS 48 240 481 

EC-386 XENIX 72 361 722 

Processor array 1 6 28 55 

Processor array 2 3 15 30 

Processor array 3 2 12 23 

Processor array 4 2 8 15 

Note: The 1,2, 3, and 4 after the processor arrays in Table 3 represent, respectively, one, two, three, and four T800 processors. 

The ECI-PPS is a highly parallel processing system 
composed of four T800 chips (actually, it can be config- 
ured with a maximum of 32 processors). Interconnection 
among each of the processors is done via program 
control using C004 network interconnectors for direct 
connection among each of the processors. This intercon- 
nection arrangement enables relatively rapid informa- 
tion exchange among processors. The performance com- 
parisons in Table 1 show that with a single T800, the 
operating speed ratio between this system and the EC- 
386 is 20:1 and that if the EC-386 is fitted with an 80387, 
their speed ratio is 2.4:1. When the system has two 
T800s, however, the speed ratio is 4:1. Because DHRYS- 
TONE mainly concerns input/output management and 

system resource management in the parallel processing 
system (with only one T800 operating) is achieved via 
the system control module, processing by this system in 
this area is somewhat slower. When carrying out large- 
scale matrix operations, the parallel processing system 
has a higher throughput speed than the EC-386. 

VH. Conclusion 
Parallel processing technology was proposed quite some 
time ago, but it has only developed quickly after very 
large-scale integration provided a powerful foundation 
for this type of technology. The architecture of the chip 
computer series of chips developed by the INMOS 
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Company has unique functions. It melds the processor, 
memory, communication protocol, and peripheral 
device functions into an integrated whole. This increases 
the working capacity of each chip and they already have 
formed internally a set of timing and control signal 
sequences and communication chain circuit functions. 
They provide an excellent foundation for putting 
together mainframes and supercomputers with various 
types of topological architectures. 

Zou Ling [6760 3781], Zhu Yuqing [2612 5148 3237], 
Wang Zhongkang [3769 0112 1660], Li Xingchuan 
[2621 S281 2S04], and other comrades also worked on 
this project. 
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[Excerpts] Abstract: This article provides a detailed 
description of the architecture, working principles, and 
software and hardware composition of the AP85 multimi- 
croprocessor system and integrates with the implementa- 
tion technology of the AP85 system for a discussion of 
several problems common to multimicroprocessor sys- 
tems. The article concludes with induction and summari- 
zation of the AP85 system's applications conditions and 
system characteristics, and it offers some proposals for 
further improvements in the system. 

I. Introduction 

Computers have undergone more than 40 years of devel- 
opment and their performance has been improved by 
many numerical grades. During the development pro- 
cess, facing restrictions by hard component technology 
and techniques on single processor speed, computer 
designers have proposed several technologies for 
increasing computing speed. The main ones are pipe- 
lining technology, vector flow and shared component 

technology, and parallel processing and RISC tech- 
nology, which are still rapidly developing. It is not hard 
to discover that these technologies exploit and utilize 
latent parallelism at different levels, so an ideal com- 
puter system can be thought of as one that should be 
capable of exploiting parallelism at all processing levels 
to concentrate various types of technologies into one 
body to obtain ultrahigh computing performance. The 
computer architecture that approximates this ideal 
model should be led by multimicroprocessor systems. 

Since the 1980's, the surging development of VLSI [very 
large scale integration] technology has led to the appear- 
ance of 32-bit high-performance microprocessors and a 
steep decline in hardware prices. These have greatly 
spurred R&D on multimicroprocessor systems. To date, 
there are at least several dozen types of multimicropro- 
cessor systems in the United States, Japan, and countries 
of Western Europe. The better known ones include the 
iPSC-VX and Butterfly from the United States and the 
PAX-64 from Japan, all of which have several dozen 
processors installed. All types of facts have proven that 
research work on multimicroprocessor systems has now 
made the transition from the experimental research stage 
to the applied research stage and that research on mul- 
timicroprocessor systems has now become a topic with 
important development directions. 

In the early 1980's, the Ministry of Aerospace Industry 
Computing Technology Institute in Xi'an began doing 
research on multimicroprocessor systems and felt that a 
system composed of several low-cost microprocessors 
was an effective way to implement a high-performance 
computer capable of meeting the urgent requirements of 
many departments within China for high-speed com- 
puters, especially aviation departments. In 1985 we 
began development of the AP85 multimicroprocessor 
system with the anticipated early-90s objective of devel- 
oping the AP256 supercomputer with a peak speed at the 
100 million instructions per second [MIPS] grade. 

II. AP85 Architecture 

The AP85 is an experimental loosely-coupled multimi- 
croprocessor system. Its goal is to support exploration 
and research on multiprocessor architectures, parallel 
algorithms, and multiprocessor support software. The 
overall system is composed of a host computer, a com- 
munication controller, and an array composed of 16 
asynchronous microprocessors. The host machine and 
communication controller are connected via a high- 
speed bus with each microprocessor in the array, which 
is also called array element processor interconnection. 
Each array element processor is also directly intercon- 
nected via a point-to-point channel with its four adjacent 
array element processors, forming an FNN (four nearby 
node interconnection) (see Figure 1). 
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Figure 1. AP85 Architecture 
Key: a. Printer; b. Disk; c. Channels; d. Array; e. Host computer 

The AP85 microprocessor array makes use of the enor- 
mous flexibility of FNN two-dimensional network inter- 
connection. This interconnection is suitable for direct 
mapping of one-dimensional, two-dimensional, ring- 
shaped, tree-shaped, multidimensional, and other math- 
ematical models. For a multiprocessor system composed 
of P nodes and using a certain number of ring-shaped 
connections, the average path of the network is P/2. If 
converted to two-dimensional network interconnection, 
the average path is P1'2. The average path of three- 
dimensional network interconnection is 3P1/3/2. Thus, 
for a relatively large-scale system composed of 1,000 
nodes, the ratio of the average paths for one, two, and 
three-dimensional interconnection is 512:32:15. Obvi- 
ously, two-dimensional interconnection is far superior to 
one-dimensional interconnection, whereas the superi- 
ority of three-dimensional interconnection relative to 
two-dimensional interconnection is much less. Taking 
into consideration the cost and degree of difficulty 
involved in interconnection, we feel that two- 
dimensional interconnection is a more ideal intercon- 
nection mode for medium and small-scale systems. 

The AP85 utilizes in-task process one-level parallelism. 
It is different from multiple component processors or 
vector processors it that it uses local instruction-level 
parallelism, which avoids restriction by scalar operations 
and the need for high-speed elements and complex logic 
structures. Compared to data pipelining processors, the 
AP85 uses a moderate-grained data pipelining structure. 

Although the degree of parallelism it utilizes is not as 
high as data pipelining processors, its simplicity of 
control is appropriate for present technical levels. 

The AP85 system uses a decentralized memory architec- 
ture and has no shared memory. Process synchronization 
is achieved automatically by the producer process trans- 
mitting data to the consumer process, which eliminates 
memory conflicts, complex switching network control, 
and a series of other problems related to a shared 
memory architecture; Although for a rather small scale 
system a multiprocessor system with a distributed 
memory architecture can result in substantial losses in 
overall system performance arising from the relatively 
large communication overhead, in a multiprocessor 
system with superhigh performance that is composed of 
tens of thousands of nodes the adoption of a decentral- 
ized memory architecture would appear to be unavoid- 
able, [passage omitted] 

rV. System Hardware Description 

A. Composition of microprocessor array 

The microprocessor array in the AP85 system is com- 
posed of 16 completely identical array element micro- 
processors. Each array element microprocessor is an 
integral microprocessor system composed of the fol- 
lowing parts. 
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1. Intel 8086 microprocessing element and Intel 8087 
coprocessor 

The Intel 8086 is a 16-bit microprocessor with a 20-bit 
address line that gives it a 1MB addressing capability. Its 
advanced internal architecture enables it to carry out 
16-bit fixed point number arithmetic and logic opera- 
tions. The Intel 8087 is a coprocessor used for the special 
purpose of processing numerical data operations that is 
capable of directly carrying out 32-bit, 64-bit, and 80-bit 
floating point operations and 18-bit BCD data opera- 
tions. Its floating point format is completely identical to 
the IEEE-751 floating point standards used in standard 
FORTRAN. At a 5 MHz working frequency, a system 
composed of an Intel 8086 + 8087 has a floating point 
operation capability of up to 0.5 MFLOPS. 

2. Array element microprocessor memory 

Each array element microprocessor has its own local 
memory that includes 128K of RAM and 48K of ROM. 
The ROM is used to access the array element micropro- 
cessor support software. With the exception of part of the 
RAM being allocated for system use, most of it is space 
available for use by users. The RAM is a dual-port memory 
that is both the main memory for the array element 
microprocessors and capable of host machine reading and 
writing. The memory capacity of the array element micro- 
processors as a whole can be expanded to 1MB. 

3. Intel 8255 parallel interface controller and Intel 8251 
serial interface controller 

The Intel 8255 parallel interface controller is used to 
control communication among adjacent array element 
microprocessors. Each array element microprocessor is 
configured with four channels that are connected, respec- 
tively, to the four surrounding array element microproces- 
sors. The serial interface controller is mainly used to 
prepare for external connection to terminals to facilitate 
debugging, and it can be connected to external input/ 
output devices. 

4. Other control components and logic 

Besides the components described above, the array element 
microprocessors also have interrupt controllers, timing 
timers, clock generators, RAM dual-port control circuits, 
and other components and logic-aided construct systems to 
ensure control of the array element microprocessors by the 
host computer and carry out communication functions 
between the host machine and the array element micropro- 
cessors and among the array element microprocessors. 

B. Composition of the host computer 

The host computer in the AP85 system is made by 
expanding an IBM PC-XT microcomputer. The 
expanded portion includes an array drive board and an 
interrupt control board. The function of the array drive 
board is to provide sufficient drive current for normal 
operation of the array microprocessors while the func- 
tion of the interrupt control board is to load and mask 

the interrupt signals sent by the microprocessor array to 
the host machine to assist the host machine in managing 
implementation of the microprocessor array. 

C. Communication controller 

The communication controller CU is the hub linking the 
host computer and the microprocessor array. It is com- 
posed of an Intel 8089 I/O processor with added control 
logic. The Intel 8089 is a coprocessor used especially for 
input/output processing. It is connected in a remote 
fashion to the host computer Intel 8088 CPU in this 
system. It treats the array microprocessors as peripherals 
and utilizes its high-speed DMA transmission functions 
to carry out data transmission from array element micro- 
processor to array element microprocessor, from array 
element microprocessors to the host computer, and from 
the host computer to the array element microprocessors. 
The broadcast transmission functions from the host 
computer to the microprocessor array and from the array 
element microprocessors to each array element micro- 
processor gives this system an extremely high transmis- 
sion efficiency. The Intel 8089 can achieve arbitrary 
connection of 8-bit or 16-bit peripherals with 8-bit or 
16-bit processor busses. This permits connection of the 
Intel 8088 which has an external data bus width of 8 bits 
with the Intel 8086 which has a data bus width of 16 bits. 

D. Interconnection channels 

1. Local interconnection channels. Each array element 
microprocessor has four parallel 8-bit input ports and 
four parallel 8-bit output ports that form dedicated 
input/output channels with the four adjacent array ele- 
ment microprocessors. The local interconnection chan- 
nels are controlled only by the array element micropro- 
cessors and are used for random data communication 
with the adjacent array element microprocessors. 

2. Global system bus: This is a 16-bit parallel time- 
division multiplexing bus that can provide the array 
element microprocessors in the array with point-to-point 
communication and broadcast communication. The 
global system bus connects the host computer to all the 
array element microprocessors. The host machine can 
use the global bus to load programs and data into the 
array element microprocessors, and it can extract the 
results from the array element microprocessors. 

V. System Software Architecture 

Figure 2 shows the model of levels in the AP85 system 
software architecture. The left half is the program running 
in the host computer. It is responsible for global control 
and provides support for operation of the system as a 
whole. The right half is the program running in the array 
element microprocessors. It is responsible for task distri- 
bution and processing. The multimicroprocessor software 
added to the PC-DOS operating system includes: 

• Array control software: This is the interface software 
for the host computer and microprocessor array. It is 
composed of physical instructions for completing 
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Figure 2. AP85 System Software Structure 
Key: a. Applications programs; b. Compiling programs; 
c. Debugging software; d. Expanded FORTRAN library; 
e. Array processor control software; f. DOS operating 
system; g. Host computer; h. Array; i. Array processor 
support software; j. Debugging software; k. Applications 
programs 

structure startup, reset, and synchronization and for 
controlling bus communication. 
Debugging software: In a multiprocessor environ- 
ment, it can support the operation of static and 
dynamic debugging DEBUG programs in parallel 
programs. It includes an assembly language level-one 
debugging program MDEBUG and a FORTRAN 
source program level-one debugging program FDE- 
BUG. 
High-level language support software: This is achieved 
by using the serial FORTRAN source language as a 
foundation and adding parallel statement functions. 
With a prerequisite of not changing the FORTRAN 
compiling program, it can convert the source program 
codes written by the FORTRAN language document 
into object codes for execution in a multiprocessor 
environment. 
Array element microprocessor support software: This 
is the environment software that remains in the array 
element microprocessors to support effective opera- 
tion of user programs. Its primary components are the 
array element microprocessor initialization program, 
self-checking program, communication program, and 
a series of software and hardware interrupt service 
programs. 
Array element microprocessor debugging programs: 
These are the debugging programs inside the host 
computer that were designed to do dynamic debug- 
ging of programs running in the array element micro- 
processors. Their functions include setting up break- 
points, single-step tracking, I/O port reading and 
writing, and so on. They are automatically loaded into 

each of the array element microprocessors during 
program debugging. 
Applications programs: These include a linear equa- 
tion group solution program, partial differential equa- 
tion solution program, finite element computation 
program, multiple integral solution program, hydro- 
logic processing and seismic processing computation 
examples, and other programs. 

VI. Applications 

With the objective of testing system performance and 
studying parallel algorithms, we selected several repre- 
sentative and general problems in engineering com- 
puting for computation and solution in the AP85 system. 
Existing typical computation examples including using 
the SOR method to solve partial differential equation 
category-one boundary value problems, linear equation 
solutions, multiple integral solutions, matrix operations, 
finite element computations, and so on. 

The results of the computation tests indicate that in 
solving problems with a relatively large number of oper- 
ations and relatively small communication overhead, the 
AP85 can provide relatively ideal speedup and effi- 
ciency. For example, the SOR method was used to solve 
partial differential equation category-one boundary 
value problems and provide linear equation group loose 
iteration method solutions, and we used the Monte Carlo 
method and number theory network method for multiple 
integral solutions, overall program computations in 
finite element computations, matrix multiplication, and 
other computations using 16 array elements, and the 
system speedup ratio was greater than 10 times. 

For the matrix addition method, however, because the 
number of array element microprocessor computations was 
too small and not large enough in proportion to the amount 
of data transmission, the speedup ratio was only about 3 
times and the improvement in speed was not significant 
enough. In using the G-J method to solve linear equation 
groups, the speedup ratio was also not very large in the 
system at the present scale, only 3 times-plus. This shows 
that certain problems themselves not suitable for parallel 
solution or the improper selection of algorithms can result 
in a situation in which the system solution rate is not high. 

The AP85 system displayed excellent performance when 
solving several real engineering problems of users. When 
solving optimum parameter selection problems for the 
hydrological forecasting model at the Xi'an Central 
Hydrology Station, the system speedup ratio was 14.37. 
Similar methods were used to solve seismic wave synthesis 
problems in engineering seismology in the PDP-11/23 and 
AP85 system, and we discovered that the solution speed for 
this problem in the AP85 system was 16.7 times the speed of 
the solution of the same problem in the PDP-11/23. 
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VII. Conclusion 

The AP85 system was successfully developed in April 
1987 and passed ministry- level examination and accep- 
tance in August 1987. The AP85 is a relatively general- 
purpose prototype that provides a dependable environ- 
ment for conducting research on multiprocessor 
architecture, parallel algorithms, and multiprocessor 
system support software, and it has laid a foundation for 
further development of even larger scale or special- 
purpose multiprocessor systems. 

In all, the AP85 system has the following characteristics: 

1. It employs a relatively ideal two-dimensional FNN 
interconnection network that facilitates direct mapping 
of algorithms for large numbers of applications problems 
into the array network. 

2. The communication modes are relatively flexible and 
it has two communication modes, high-speed DMA 
global bus communication and parallel node cross 
channel communication. 

3. The host computer and array element microprocessors 
adopt a similar series of processors and components that 
facilitate the use of the host machine software resources. 

4. It has excellent expandability that facilitates the 
addition of nodes to construct larger scale systems. 
Added to the fact that the components and host machine 
it uses are the most popular in the market, this makes it 
easy to use higher grade compatible components to raise 
the system performance grade. 

5. There is relatively abundant software support for the 
system and it can support the use of high-level language 
FORTRAN programming. 

6. It is configured with the relatively powerful assembly 
language level-one and high-level language level-one 
debugging tools MDEBUG and FDEBUG. They include 
a FORTRAN source language level-one debugging tool, 
which is an entirely new software development tool for 
IBM-PC/XT users. 

The AP8S system is an experimental multimicroprocessor 
system and it still has problems like less-than-powerful 
software functions, rather low system performance, and so 
on. To improve the overall performance of the system by 
numerical grades, we are preparing to focus on develop- 
ment work in the following areas. 

1. Configuration of a parallel compiling and more perfect 
function multiprocessor operating system so that normal 
users can use the system without too much difficulty. 

2. Adoption of an Intel 80386+80387 high-speed processor 
and special vector and floating point operations units for the 
processing units of the array element microprocessors and 
simultaneous increases in the system scale. 

3. Adoption of a higher speed bus and cross channels in 
conjunction with configuring each array element micro- 
processor with special processing elements to manage 
communication and reduce the overhead taken up by 
communication. 

4. Further development of research work on parallel 
algorithms and the establishment of an intersecting 
parallel programming environment for users to aid users 
in writing high efficiency parallel programs. 
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[Excerpts] Abstract: This paper introduces a VLIW [very 
long instruction word] multiprocessing element single-chip 
computer now being developed. The architecture of this 
machine is based on URPR [unrolling, pipelining, 
rerolling] software pipelining technology and uses a pipe- 
line register file to reduce the interbody dependent dis- 
tance, which enables full exploitation of fine-grained par- 
allelism and thereby enhances loop body overlapping and 
greatly shortens the length of the loop body after optimi- 
zation. The results of simulation experiments indicate that 
this architecture can attain high performance when 
matched with an optimizing compiler. 

I. Introduction 

[passage omitted] 

Our basic idea was to use current VLSI [very large scale 
integration] technology in an effort to integrate several 
processing elements on a single chip to construct a signal 
processor with a VLIW architecture and to rely on an 
optimizing compiler to fully exploit instruction-level 
fine-grained parallelism, thereby greatly improving its 
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performance compared to single processors under iden- 
tical technical conditions. In addition, the description 
provided below shows that while the adoption of a 
VLIW architecture overall requires the use of more 
transistors, the overall structure is relatively integral and 
simple, so it is not hard to implement. 

Because the optimizing compiler has an extremely great 
effect on the performance of VLIW architecture, all 
types of VLIW architectures are actually based on cer- 
tain key optimization algorithms. For example, the 
TRACE series from the MULTIFLOW Company is 
based on a path scheduling algorithm. The VLIW archi- 
tecture we are proposing is based on a URPR software 
pipelining loop code optimization algorithm, so we call it 
the URPR-1 machine. We proposed the URPR algo- 
rithm in 1986 as being very suitable for loop code 
optimization in signal processing and image processing, 
especially because it has relatively good time benefits as 
well as relatively good space benefits. This point is 
especially important with single-chip processors that 
have a limited amount of storage. 

n. Using Hardware Support To Improve the Benefits of 
the URPR Algorithm 

In signal processing, image processing, and other program 
codes, the execution time for loops, especially inner-level 
loops, accounts for a very large proportion. Thus, loop 

optimization is the key to improving program execution 
efficiency and overall system performance. Software pipe- 
lining is an effective technique for loop optimization. With 
a prerequisite of not changing the program semantics, 
iteration is carried out for loop bodies at different levels to 
fully exploit the parallelism of hardware resources and 
thereby shorten loop execution times. 

We proposed the URPR software pipelining algorithm 
in 1986'9,111. It has the advantages of a low degree of 
computing complexity and good time and space benefits. 

Its main principles are that the loop bodies are first opened 
up to K in number and these K loop bodies are pipelined 
and loaded, after which they are drawn in to obtain a new 
optimized loop body whose minimum length is the inter- 
body dependent distance D of the original loop body. For 
this reason, two types of hardware support are required to 
obtain the optimum benefits: 

1. Increasing the number of data paths and functional 
units to reduce resource conflicts. 

2. In a situation of infinite resources, the minimum length 
of a loop body after optimization is equal to the loop body 
interbody dependent distance D, so hardware support is 
required to reduce D. We pointed out in reference [7] that 
reducing the register holding time can reduce D. Lam 
adopted a variable modulo expansion method in the 
WARP machine161 in which the same variable located in 
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different loops is given to different registers to increase the 
degree of interbody iteration. Here, we are proposing a 
new hardware support method for reducing D: the pipeline 
register file, [passage omitted] 

HI. URPR-l Architecture 

The URPR-l is a fixed point 16-bit single-chip signal 
processor. Its architecture is illustrated in Figure 2. It is 
composed mainly of nine PEs [processing elements] with 
identical structures, the pipeline register file PR, the 
instruction memory IM, the data memory RAM, the 
address unit ÄU, the related control units, and so on. 
The operating cycle of the chip is SOns. 

Processors with this type of structure have the following 
characteristics: 

1. High degree of parallelism in operation. The overall 
processor is capable of completing over 100 operations in 
one machine cycle. The operations that each processor can 
execute in parallel are: one multiplication operation, one 
arithmetic logic operation, eight inter-register data trans- 
mission operations, and two memory read-write operations. 

2. The pipeline register is the core. The pipeline register 
can exchange data with the memory and it can transfer 
data between the register of its own PE and the corre- 
sponding register of an adjacent PE, which greatly 
improves the parallelism of operations. 

3. Shared main memory. The data registers in the chip 
are shared by all the PEs. This structure can simplify 

program design and reduce the amount of communica- 
tion among PEs, but hardware implementation is rela- 
tively complicated. 

4. Good expandability. The three main parts—the pipe- 
line register, instruction memory, and PEs—establish 
corresponding relationships similar to a bit slice struc- 
ture. At present it has 9 PEs. If the number of PEs is 
increased, increasing the three parts simultaneously is all 
that is needed. 

A. PE structure 

Each PE is composed mainly of a rapid multiplier MUL, 
an arithmetic logic unit ALU, 16 registers, a certain 
number of multiplex switches, and so on, as illustrated in 
Figure 3. 

The required number of operations for the ALU and MUL 
come from the pipeline register file and the operations 
results are sent back to the register file. The operations 
units do not have a direct relationship with memory. This 
is the architectural design idea of having the registers as the 
core, and this type of structure can increase the speed of 
data flow in the operations units and fully foster the 
efficiency of the rapid operations units. 

To make an immediate increase in the number of 
operations required by the operations units, we adopted 
two measures. One was establishing several data paths 
between the registers and the memory and between the 
PEs and the corresponding registers. Now, each PE has a 
total of 18 data paths to the outside. The second measure 
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was to make data transmission from the registers to the 
outside and operation of the operations units operate in 
parallel and use compiler scheduling to ensure that the 
required number of operations enter the pipeline register 
rue in advance. 

The rapid multiplier completes a 16-bit fixed point 
multiplication in one machine cycle. 

The rapid multiplier is used to achieve division. The 
completion of one rapid division requires three multipli- 
cations and three ALU operations. 

The main ALU operations are logic operations, arith- 
metic operations, shift operations, and so on. Among 
them, three address forms are used for logic operations 
and arithmetic operations: two source addresses and one 
target address. Besides using one source address and one 
target address, shift operations also use a 4-bit expres- 
sion shift bit number of another source address. 

B. Pipeline register file 

The 16 registers in each PE are divided into three 
categories: 

1. Local registers, a total of eight, that are used for 
storing only those constants and variables that are read 
and written in their own PE. The function of these 
registers is identical to general purpose registers in 
traditional computers. 

& 

n 
PE 

2. Leftward pipeline registers, a total of six. These registers 
have two uses. One is vertical pipelining to establish a data 
path between two arbitrary adjacent vertical registers. The 
use of vertical pipelining can directly achieve assignment 
operations without going through the ALU. The second is 
horizontal pipelining, flowing leftward toward the corre- 
sponding register on the adjacent PE. These types of 
pipelining can be used to achieve inter-segment variable 
transmission, meaning that variables are read out and 
written in in the same loop body. 

3. Rightward pipeline registers, a total of two. Besides 
having vertical pipelining functions, these registers can 
also flow rightward to the corresponding adjacent registers. 
The use of this type of horizontal pipelining permits the 
transmission of inter-segment recursive variables, 
meaning variables that are written in in the same loop 
body but only read out during the next or several later loop 
bodies. 

All of these three types of registers are combined to 
construct a pipeline register file. Figure 4 illustrates the 
connection relationship for eight of the pipeline registers. 

Data can be transmitted via two methods among the 
registers inside each PE: 

1. Via vertical pipelining operations among adjacent 
pipeline registers. 

2. Via the ALU. 
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The compiler ensures that every effort is made to use the 
first method by allocating the two variables to be trans- 
ferred into the two adjacent registers, and it uses the 
second method only when necessary. 

there are also two methods for data transmission 
between the registers inside each PE and the outside: 

1. There are direct data paths between the pipeline registers 
and the registers in adjacent PE with the same number. 

2. In one machine cycle, each PE can exchange two 
pieces of data with the memory in the chip. 

The latter method is mainly used to access the original 
data required in the operation and save intermediate 
results. Data transmission between PE should make 
every effort to use the first method and the second 
method is only used when necessary. 

C. Instruction set 

Because the URPR-1 is oriented toward signal processing 
and image processing, we collected several dozen types of 
common signal processing and image processing algo- 
rithms and used the URPR software pipelining algorithm 
and optimizing compiler technology to carry out manual 

45 • «• 45      14     • • 
PEnI«««  |PEo|RW9|...   |RWQ1BR"] 

programming and optimization analysis of these algo- 
rithms. We also took into consideration the development 
situation for VLSI technology and realistic possibilities to 
design the instruction set described below. 

The broad instructions for the URPR-1 have a total of 
558 bits and are composed of three parts, as illustrated in 
Figure 5(a). 

Each part is defined as follows: 

1. Each PE field has 45 bits in a format as illustrated in 
Figure 5(b). In it, E is the multiplication enable bit. 
When E is set, (SR2)*(SR,)-»DR is executed. Otherwise, 
there is no operation. OP is the ALU operation code that 
includes arithmetic logic operations, shift operations, 
and two types of multiplication support operations. 
Ro,...,R7 are the register pipelining control fields and 
each register uses 2 bits for control. 

2. Each memory read/write field has 14 bits in a format 
as illustrated in Figure 5(c). In it, the four types of codes 
for F represent, respectively, no read/write, memory 
write, memory read, and memory read based on FFT 
butterfly address conversion. The PE# and REG# 
operate together to point to a register in the register file 
and AC# is the number of the address counter. See 
Section D below for the address formation process. 

14       !3 

(a)Instruction format 

£ |RS2[RS.i|DR | OP (RS2 lRSt | DR~TR7 

•MUL ALU- 
(b)PE field 

i 
PIPELINE REG.- 

/ F   | PE* 1REG#1AC#1 
(C)RW field 

1   OP     PEs |   AD    { 
(d)BR   field 

Figure 5. Instruction Format for URPR-1 Machine 
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3. The branch control field BR. We have stipulated that 
only one PE is permitted to execute a branch operation 
in one machine cycle. The format of the field is illus- 
trated in Figure 5(d). In it, OP is the operation code, and 
its branch conditions come from the ALU operations 
result ofthat PE that is pointed out by the PE# field. AD 
is the branch target address, and it points to an instruc- 
tion in the instruction memory IM. In addition, to match 
up with the conditional branch statements in high-level 
languages, we did not establish a condition code register. 
The branch conditions are obtained directly from the 
results of execution of the instruction. 

D. Address unit AU 

The five memories operating in parallel in the chip can 
read and write 10 pieces of data in one machine cycle 
that are controlled, respectively, by the 10 read/write 
fields in the instruction. Each PE is permitted to access 
the memory two times in one machine cycle but the total 
number of accesses by the nine PEs cannot exceed 10 
times. Thus, the five memories and nine PEs actually 
constitute a 5*18*16 multiplex cross switch, or they may 
be called five memory busses, as illustrated in Figure 6. 
In the figure, PR„,...,PR8 represent, respectively, the 
pipeline registers in the nine PEs. The data busses for the 
memories are connected to each of the pipeline registers 
via a multiplex switch, latch, and three-state gate. AG is 
the address generator that is used to form the address for 

PR i 

memory read/write. Its primary function is to achieve 
FFT butterfly address conversions. Moreover, it also 
includes five address registers and five 16-to-l multiplex 
switches, and so on. The five address generators are used 
at different times and provide 10 addresses in one 
machine cycle. Address computation and memory read/ 
write operations work in parallel in a pipeline mode. 
The address counter is only loaded once at the time of 
machine initialization. During the program running pro- 
cess, a 1 is added to all 16 address counters when each 
loop is finished. 

IV. An Example of an FFT Butterfly Operation 
We will use a base-2 complex 1024 point FFT innermost 
layer loop butterfly operation as an example of URPR-1 
system operation, [passage omitted] 

Figures 7(c) and (d) [not reproduced] show that when the 
URPR-1 machine is computing an FFT innermost layer 
loop, each machine cycle carries out one butterfly opera- 
tion. Completion of the entire FFT computation requires 
10*512 butterfly computations, so the time required is: 
50ns*10*512 - 0.256ms. Adding the pipeline filling and 
emptying time, the URPR-1 can complete base-2 complex 
1024 point FFT computations in 0.26 ms. 

V. Discussion 
Table 1 compares the URPR-1 with the TRACE and 
WARP VLIW architecture machines in the two areas of 
architecture and program design. 

RAM 4 AG4 

RAMx Ad. 

RAMp AG. 

PRTI   iPRol   address counter 16 » lGb|t 

Figure 6. Composition of Address Unit AU 
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Table 1. Comparison of Three Types of Machines 
Machine Architecture Program design 

URPR-1 16-bit fixed point VLIW machine using a shared internal 
memory multiple PE structure, data transmitted between 
PEs via a pipeline register file, data transmission speed 
160MWords/s. 

Users use the C language for programming and employ an 
optimizing compiler with two-level software pipelining 
technology to develop instruction-level fine-grained 
parallelism, making full use of all of the machine's PEs and 
all functional units within each PE. 

TRACE A large VLIW computer configured with several integer 
processing elements and floating point processing elements, 
with busses interconnecting each of the processing elements 
with the others and the processing elements with the 
internal memory, each functional unit utilizes a pipelining 
structure. 

Users can use the C or FORTRAN languages for program- 
ming and use a multiplex scheduling algorithm compiler to 
develop instruction-level fine- grained parallelism. 

WARP An MIMD structure composed of 10 cells, adjacent cells are 
interconnected via two data paths and one address path, 
each cell has a VLIW structure, with rather large local 
memory capacity and using a pipelining structure 32-bit 
floating point adder and multiplier. 

Users use W2 language for programming, the compiler uses 
software pipelining technology to develop fine-grained 
parallelism for the program in each cell, coarse-grained 
parallelism among the cells is developed by users or by 
other compilers. 

Comparing the URPR-1 and the TRACE, the TRACE is 
a superminicomputer oriented toward scientific com- 
puting that is configured with several integer processing 
and floating point processing elements, and the elements 
are interconnected via busses. The URPR-1 is a VLIW 
single-chip machine oriented toward signal processing 
and is only configured with fixed point multiplication 
and fixed point addition functional units. Adjacent PEs 
transmit data via pipeline registers. Compared to the bus 
arrangement, it has a broad bandwidth and is more 
appropriate for use in VLSI implementation. The opti- 
mizing compiler in the URPR-1 uses two-level software 
pipelining technology for loop body optimization, which 
is more effective that the route scheduling method 
employed in the TRACE compiler. 

Comparing the URPR-1 and the WARP, the WARP is 
composed of 10 elements with more powerful functions 
and there is no shared memory for each element. Adja- 
cent elements are configured with two data paths and 
one address path. In the URPR-1, however, adjacent PEs 
can transmit a maximum of eight pieces of data simul- 
taneously via the pipeline registers, which enables full 
exploitation of fine-grained parallelism. In the area of 
program design, because there is coarse-grained paral- 
lelism among the elements in the WARP, partitioning 
must be done by the programmer, which makes user 
programming more difficult. Moreover, WARP requires 
users to use the W2 language for programming, so users 
cannot directly utilize existing applications programs in 
the signal processing and image processing realm. 
URPR-1 users do not have to partition the programs and 
can use the C language for programming, which aids in 
transplanting existing applications programs. 

Comparing the URPR-1 with pipelining processors, the 
URPR-1 does not link all of its functional units into a 
hardware controlled pipeline structure. Instead, applica- 
tions software pipelining technology partitions loop pro- 
grams into each of the functional units. During the 
process of program execution, each functional unit 
seems to be linked into a software controlled dynamic 
pipeline, which gives it greater flexibility than pipeline 

processors so that it can be adapted to all types of 
applications programs and more effectively solve cutouts 
and other problems encountered in pipeline processors. 

VI. Conclusion 

The URPR-1 is a single-chip signal processor that uses a 
VLIW architecture. It has a 16-bit fixed point word length, 
an instruction word width of 558 bits, 2K of RAM and 2K 
of ROM on the chip, and about 600,000 transistors and 
128 pins on the chip. Most of the chip is taken up by 
memory, registers, and non-complicated PEs. 

At an operating cycle of 50ns, the peak computation rate 
is 360 MIPS and the signal transmission rate between 
PEs is 160 MWords/second. 

The URPR-1 is configured with an optimizing compiler 
(see the first page of the next article),. This compiler can 
convert applications programs written in the C language 
into machine codes and fully exploit instruction-level 
fine- grained parallelism. The prototype for the compiler 
has now been completed and the hardware design is in 
the simulation experiment stage. 

Table 2. Simulation Results 
Complex 1024 point FFT (base 2) 0.26 ms 

FIR [finite impulse response] filtering 
(one accumulation) 

6ns 

IIR [infinite impulse response] filtering 
(eight coefficients) 

100ns 

Lattice filtering 50ns 

Vector point accumulation (each element) 12.5ns 

The results of simulation experiments for typical signal 
processing programs are given in Table 2. We expect 
broad application of the URPR-1 in signal processing, 
image processing, and other applications realms. 

We offer our sincere thanks to professor Yue Zhenwu 
[1471 7201 0063] of the Qinghua University Microelec- 
tronics Institute for his useful assistance. 
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[Excerpts] Abstract This article begins by proposing a com- 
piling technique that is capable of fully exploiting loop 
program instruction-level fine-grained parallelism: two- 
level software pipelining. This technology is based on the 
URPR [unrolling, pipelining, and rerolling] software pipe- 
lining algorithm, which organically integrates resource allo- 
cation and code optimization. It then describes a VLIW 
optimizing compiler that adopts two-level software pipe- 
lining and concludes with an example of an FFT inner loop 
compiling process and the results of preliminary experi- 
ments. 

I. Introduction 

VLIW (very long instruction word) computer technology 
has attracted people's attention because of its superior 
performance/price ratio. In less than 10 years' time, 
TRACE, Cydra5, Warp, and several other products have 
appeared. Their applications range from scientific com- 
puting to signal processing, image processing, and other 
fields. VLIW development experience indicates that, 
besides the design of the architecture itself, the main key 
problem is to design an optimizing compiler capable of fully 
exploiting instruction-level fine-grained parallelism16,12'. 
Software pipelining is an effective technique for instruction- 
level loop optimization12' and has been adopted in several 
VLIW compilers13'. The URPR software pipelining algo- 
rithm we proposed in 1986 has rather good time benefits 
and space benefits as well rather low computing complexity, 
and other advantages'7'. Recently, we used the URPR 
algorithm as a basis for designing the URPR-1, which is 
suitable for signal processing and image processing. This is 
a multiprocessor architecture that can be implemented on a 
single chip (see the previous article regarding the URPR-1 
architecture). The present article provides a preliminary 
description of the optimizing compiler that corresponds to 
the URPR-1 architecture. In this compiler, we proposed and 
implemented a new compiling technique that integrates 
resource allocation with code optimization: two-level soft- 
ware pipelining, [passage omitted] 

III. Design Ideas and Overall Structure for the URPR-1 
Optimizing Compiler 

Because most signal processing applications programs 
are written in the C language, we started with the 
convenience of users and took into consideration pro- 
gram transplantability. We selected the C language as the 
source language for the URPR-1 optimizing compiler. 
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Besides conventional local and global compression optimi- 
zation methods, the basic optimization measure for com- 
pilers is URPR software pipelining technology. In addi- 
tion, to fully exploit the intrabody and interbody 
parallelism of loop bodies and thereby make full use of the 
PE layer and functional unit [FU] layer hardware paral- 
lelism in the machine architecture, the compiler adopts a 
two-level software pipelining technique that integrates 
resource allocation with code optimization. The compiler 
also uses the loop preprocessing algorithm and new loop 
body compression algorithm proposed in reference [11] to 
solve loop interrelationship problems, thereby further 
improving the optimization results of URPR software 
pipelining technology. The compiler applies the GURPR* 
algorithm proposed in reference [9] to solve global soft- 
ware pipelining problems, which enables the compiler to 
process the innermost loops that are the basic blocks of 
loop bodies and to process arbitrary complex loops in loop 
bodies that contain branches. 

The URPR-1 optimizing compiler is composed of six 
modules, as shown in Figure 5 [not reproduced]. Like 
conventional compilers, its front end is not related to the 
machine and its input C language programs carry out 
lexical analysis and syntactic analysis and generate four- 
element intermediate codes. 

The basic blocks that control the ranking of flow analysis 
partitioning of intermediate codes form the program 
flow chart and examine all loops. 

Data flow analysis includes local analysis and global 
analysis. Local analysis constructs the DDG of all basic 
blocks and simultaneously carries out local optimization 
of traditional intermediate codes. Global analysis col- 
lects the data-related information among all basic blocks 
and derives all global variables, after which it carries out 
global optimization of traditional intermediate codes. 

Two-level software pipelining composed of the three 
modules of level-one software pipelining, register alloca- 
tion, and level-two software pipelining completes code 
generation and optimization. The level-one software 
pipelining module is composed of four sub-modules: 
data relational analysis, operation scheduling, URPR 
software pipelining, and functional units (such as adders 
and multipliers). The level-two software pipelining 
module is composed of five sub-modules: data relational 

analysis, intrabody compression, URPR software pipe- 
lining, duplicate resource (such as the read/write port of 
each PE) and public resource (such as busses) allocation, 
and loading and emptying part construction. 

Register allocation in the URPR-1 optimizing compiler 
is different from register allocation in traditional com- 
pilers. The concern in register allocation in traditional 
compilers focuses on reducing the number of accesses of 
internal memory in object codes. Although register allo- 
cation in the URPR- 1 optimizing compiler also solves 
this problem, even more important problems are: 1) 
Allocating a group of registers in the pipeline register file 
to distribute those constant value operations and refer- 
ence operations in different PEs. This group of registers 
constructs a register chain and inserts data transmission 
operations among the PEs; 2) The pipeline chain in the 
pipeline register file is used for intermediate code assign- 
ment statements. The register allocation module uses 
information generated by level-one software pipelining 
for effective resolution of these two problems. 

IV. Examples 

We used 1024 base-2 complex FFT innermost layer loop 
butterfly operations as examples of the operation of the 
URPR-1 optimizing compiler (see Figure 7 in the article 
"VLIW Architecture Based On Software Pipelining 
Technology" above) [not reproduced]. 

Y. Experiment and Discussion 

The prototype of the URPR-1 optimizing compiler has 
been implemented in a SUN-3 workstation. We used this 
prototype to conduct some experiments on inner loops 
in typical signal processing and image processing pro- 
grams. The results of the initial experiments given in 
Table 1 show that the optimization time benefits and 
space benefits of the URPR-1 optimizing compiler both 
approximate manual coding levels. This is the result of 
adopting the URPR algorithm and two-level software 
pipelining technique. In addition, its computing com- 
plexity is 0(m2), where m is the number of statements in 
the inner loop. Table 2 shows that the compiling time of 
the optimizing compiler is acceptable. 

There are differences between the URPR-1 optimizing 
compiler and other VLIW optimizing compilers. Table 3 
compares the URPR-1 compiler with the Warp compiler 
and Bulldog compiler. 
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Table 1. Inner Loop Optimization Results For Several Typical Signal/Image Processing Algorithms for the URPR-1 
Optimizing Compiler (Execution time (number of cycles)/Space taken up (number of instructions)) 

Algorithm Sequence code Optimizing compiler output code Manual coding 
FFT 20n/20 (n + Ki)/l (n-Kiyi 

Convolution and correlation 53n/53 (n + K2)/l (n + K2)/l 

FIR filtering 35n/35 (n + K3yi (n + K3)/l 

LATTICE filtering 30n/30 (n + K4VI (n + K4VI 

IIR filtering 33n/33 (2n + K5)/2 (2n + K5V2 

LPC [linear predictive coding] coding 23n/23 (2n + K«)/2 (2n + K6V2 

3X3 Laplacian edge detection 79n/79 (4n + K7)/4 — 
Computing Gradient (using 9X9 canny operator) 112n/112 (4n + K8V4 ■.—■-. 

n: Number of loops. Ki, K2, K3, K4, Kj, Kg, K7, and Kg are constants unrelated to n and represent the execution time for the loading and emp- 
tying part 

Table 2. Inner Loop Compiling Times For Several Typical Signal/Image Processing Algorithms For the URPR-1 
Optimizing Compiler in a SUN-3 Workstation 

Algorithm Compiling time (a) 
FFT 5.7 

Convolution and correlation 7.7 
FIR filtering 4.8 
LATTICE filtering 4.6 
IIR filtering 4.7 
LPC coding 3.9 

3X3 Laplacian edge detection 10.6 

Computing Gradient (using 9X9 canny operator) 14.8 

Table 3. Comparison of URPR-1 Compiler With Other Compilers 
Compiler Is two-level hardware 

parallelism partitioned? 
Optimizing technique used Are phases Integrated? 

PE lerel FU level 
URPR-1 compiler Yes Software pipelining Software pipelining Yes 

Warp compiler Yes User develops coarse- 
grained parallelism 

Software pipelining No 

Bulldog compiler No Loops opened and path scheduling method used for 
compression 

Yes 

*This topic was funded by the National Natural Science 
Fund. 

References 

[1] A. Aiken and A. Nicolau, Perfect Pipelining: A New 
Loop Parallelization Technique, Research Report, 87- 
873, Department of Computer Science, Cornell Univer- 
sity, 1987. 

[2] A. E. Charlesworth, An Approach to Scientific Array 
Processing: The Architecture Design of the AP- 
120B/FPS-164 Family, Computer, No 9,1981 pp 18- 27. 

[3] J. R. Ellis, Bulldog: A Compiler for VLIW Architec- 
tures, The MIT Press, Cambridge, Mass., 1985. 

[4] F. Gasperoni, Compilation Techniques for VLIW 
Architectures, Technical Report 435, New York Univer- 
sity, 1989. 

[5] M. S. Lam, Software Pipelining: An Effective Sched- 
uling Technique for VLIW Machines, Proceedings of the 
SIGPLAN '88 Conference on Programming Language 
Design and Implementation, Atlanta, 1988. 

[6] R. Mueller, B. Su, et al., A Case Study in Signal 
Processing Microprogramming Using the URPR Soft- 
ware Pipelining Techniques, Proceedings of the 19th 
Annual Workshop on Microprogramming (MICRO-19), 
1986 pp 109-115. 



JPRS-CST-92-020 
28 October 1992 

31 

[7] B. Su et al., URPR—An Extension of URCR for 
Software Pipelining, Proceedings of MICRO-19, 1986. 

[8] B. Su, S. Ding, J. Wang, and J. Xia, GURPR—A 
Method for Global Software Pipelining, Proceedings of 
MICRO-20, 1987. 

[9] Su Bogong [5685 0130 3797] et al., GURPR—A 
New Global Software Pipelining Method, 4th National 
Distributed System and Firmware Engineering Aca- 
demic Conference, 1990. 

[10] B. Su, J. Wang, Z. Tang, W. Zhao, and Y. Wu, A 
Software Pipelining Based VLIW Architecture and Opti- 
mizing Compiler, Proceedings of MICRO-23, 1990. 

[11] B. Su and J. Wang, Loop-Carried Dependence and 
the General URPR Software Pipelining Approach, Pro- 
ceedings of the 24th Hawaii International Conference on 
System Science (HICSS-24), 1991. 

[12] R. F. Touzeau, A Fortran Compiler for the FPS-164 
Scientific Computer, Proceedings of the ACM SIG- 
PLAN Symposium on Compiler Construction, 1984 pp 
48-57. 


